首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24822篇
  免费   4395篇
  国内免费   3338篇
化学   15718篇
晶体学   206篇
力学   1707篇
综合类   262篇
数学   1707篇
物理学   12955篇
  2024年   50篇
  2023年   329篇
  2022年   621篇
  2021年   899篇
  2020年   1084篇
  2019年   865篇
  2018年   788篇
  2017年   1024篇
  2016年   1176篇
  2015年   1109篇
  2014年   1544篇
  2013年   2049篇
  2012年   1644篇
  2011年   1620篇
  2010年   1414篇
  2009年   1711篇
  2008年   1657篇
  2007年   1701篇
  2006年   1591篇
  2005年   1340篇
  2004年   1211篇
  2003年   1014篇
  2002年   810篇
  2001年   662篇
  2000年   603篇
  1999年   550篇
  1998年   461篇
  1997年   395篇
  1996年   344篇
  1995年   340篇
  1994年   263篇
  1993年   221篇
  1992年   184篇
  1991年   178篇
  1990年   146篇
  1989年   139篇
  1988年   136篇
  1987年   106篇
  1986年   91篇
  1985年   87篇
  1984年   60篇
  1983年   39篇
  1982年   65篇
  1981年   49篇
  1980年   40篇
  1979年   48篇
  1978年   16篇
  1977年   21篇
  1976年   13篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
《中国化学快报》2020,31(8):2099-2102
In this work, the two-dimensional MoS2 film was prepared by sulfuring the molybdenum atomic layer on SiO2/Si substrate. The reaction temperature, heating rate, holding time and carrier gas flow rate were investigated comprehensively. The quality of MoS2 film was characterized by optical microscopy, atomic force microscopy, Raman and photoluminescence spectroscopy. The characterization results showed that the optimum synthesis parameters were heating rate of 25 °C/min, reaction temperature of 750 °C, holding time of 30 min and carrier gas velocity of 100 sccm. The MoS2 gas sensor was fabricated and its gas sensing performance was tested. The test results indicated that the sensor had a good response to both reducing gas (NH3) and oxidizing gas (NO2) at room temperature. The sensitivity to 100 ppm of NO2 was 31.3%, and the response/recovery times were 4 s and 5 s, respectively. In addition, the limit of detection could be as low as 1 ppm. This work helps us to develop low power and integrable room temperature NO2 sensors.  相似文献   
92.
《中国化学快报》2020,31(11):2897-2902
Directly monitoring mitophagy-specific viscosity dynamic in living cells is of great significance but remains challenging. Herein, this study reported a novel mitochondria-targeted fluorescent probe DPAC-DY based on vibration-induced emission (VIE) for monitoring viscosity changes during mitochondrial autophagy. This probe contained N,N'-diphenyl- dihydrodibenzo[a,c]phenazine (DPAC) as the VIE core and two positively charged pyridinium moieties for mitochondria anchoring. As the ambient viscosity increased, the vibration of DPAC-DY could be hindered, and subsequently resulting in the enhancement of fluorescence emission. In vitro and intracellular experiments indicated that the probe DPAC-DY showed highly sensitive response to viscosity due to VIE mechanism. Importantly, by virtue of this probe, in situ and real-time visualization of the specific viscosity dynamics during the mitochondrial autophagy process was achieved. Thus, this work provides a novel strategy for VIE-based viscosity response sensors applied to specific organelles and offers a platform for in-depth study of mitochondrial viscosity-related diseases.  相似文献   
93.
Novel highly sensitive chiral organic field-effect transistors(COFET)were developed by directly assembling imidazolium3,5-dimethylphenylcabamoylated-β-cyclodextrin(lm^+-Ph-β-CD)and 3,5-dimethylphenylcarbamoylated-β-CD(Ph-β-CD)respectively onto the semiconductor layer as sensing units.The Im+-Ph-β-CD/COFET afforded better enantioselectivity and a lowest detection concentration of10^-18 L/mol as well as the potentiality in quantitative analysis of commercial medicines.  相似文献   
94.
ABSTRACT

This study computes the potential energy curves of the X1Σ+, A1Π, B1Δ, C1Σ+, and D1Π states of AlO+ cation and the transition dipole moments between them. The orders of the rotationless radiative lifetimes are 10–100?μs for the A1Π state, 1–1000?ms for the B1Δ state, 10?ns for the first well and 100?ns for the second well of the C1Σ+ state, and 1?μs for the D1Π state. Emissions of the B1Δ–A1Π and D1Π–C1Σ+ systems are so weak that they are hardly measured via spectroscopy, the emissions of the C1Σ+–X1Σ+, C1Σ+–A1Π, and D1Π–X1Σ+ systems are so strong that they can be detected readily, and emissions of the A1Π–X1Σ+ and D1Π–A1Π systems can be observed through spectroscopy only by a significant effort. There is a strong great similarity between spontaneous emissions of the A1Π–X1Σ+ system of the AlO+ cation and the A2Π–X2Σ+ system of the AlO radical. The emissions of the A2Π–X2Σ+ system of the AlO radical have been measured in outer space Therefore, it is highly possible that the emissions of the A1Π–X1Σ+ system of the AlO+ cation can be detected in the astrophysical media.  相似文献   
95.
This New Views article will highlight some recent advances in high sensitivity gas detection using direct infrared absorption frequency comb laser spectroscopy, with a focus on frequency comb use in chemical reaction kinetics and our own contribution to this field. Our recently implemented detection technique uses a combination of a 12.9?GHz free spectral range virtually imaged phased array and diffraction grating to spatially disperse the mid-infrared frequency comb onto a camera. Individual frequencies or ‘comb teeth’ of a 250?MHz repetition-rate frequency comb are able to be resolved. High molecular sensitivity is achieved by increasing the interaction path length using a Herriott multipass cell. High spectral resolution, broadband spectral coverage, and high molecular sensitivity are all achieved on an adjustable 1–50 µs timescale, making this frequency comb apparatus ideal for measuring chemical reaction kinetics where multiple absorbing species can be monitored simultaneously. This New Views article will also discuss some of the challenges and decisions that chemists might face in implementing this advanced physics technology in their own laboratory.

Spatially dispersed 250 MHz mid-infrared frequency comb laser, with absorption of some frequencies by a dilute sample of methane.  相似文献   
96.
翁明  谢少毅  殷明  曹猛 《物理学报》2020,(8):210-216
以介质填充的平行板放电结构为例,本文主要研究了介质填充后微波低气压放电和微放电的物理过程.为了探究介质材料特性对微波低气压放电和微放电阈值的影响,本文采用自主研发的二次电子发射特性测量装置,测量了7种常见介质材料的二次电子发射系数和二次电子能谱.依据二次电子发射过程中介质表面正带电的稳定条件,计算了介质材料稳态表面电位与二次电子发射系数以及能谱参数的关系.在放电结构中引入与表面电位相应的等效直流电场后,依据电子扩散模型和微放电中电子谐振条件,分别探讨了介质表面稳态表面电位的大小对微波低气压放电和微放电阈值的影响.结果表明,介质材料的二次电子发射系数以及能谱参数越大,介质材料的稳态表面电位也越大,对应的微波低气压放电和微放电阈值也越大.所得结论对于填充介质的选择有一定的理论指导价值.  相似文献   
97.
We incorporate the Boltzmann factors for inter‐monomer bending energy into the monomer growth direction choice in Rosenbluth's algorithm to model chains of arbitrary nearest‐neighbor rigidity. This allows for the consideration of compact (bent state lower in energy), free (straight and bent state equal in energy), or extended chains (bent state higher). We validate against, and compare to, various other results, showing very good agreement with known results for short chains and demonstrate the ability to model chains up to 500 segments long, far beyond the length at which the normal Rosenbluth method becomes unstable for reasonable nonzero bending energies. This approach is easily generalizable both to other energies determinable during chain growth, for example, polymers composed of more than one type of monomer with differing monomer interaction energies, as well as to other chain production algorithms. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1684–1691  相似文献   
98.
High brightness amine‐terminated silicon nanocrystals (Si NCs) have been utilized in a simple and rapid assay for the highly selective and sensitive detection of Fe3+ via quenching of their strong blue luminescence, without the need for analyte‐specific labeling groups. Sensitive detection of Fe3+ is successfully demonstrated, with a linear relationship observed between luminescence quenching and Fe3+ concentration from 5 × 10?6 to 900 × 10?6m and a limit of detection of 1.3 × 10?6m . The Si NCs show excellent selectivity toward Fe3+ ions, with no quenching of the luminescence signal induced by the presence of Fe2+ ions, allowing for solution phase discrimination between the ionic species in different charge states.  相似文献   
99.
Detection of jamming attacks is an important tool to improve the resource efficiency of jammer resilient communication networks. Detecting reactive jammers is especially difficult since the attacker is cognitive and focuses only on the used channels. Orthogonal frequency division multiplexing with index modulation (OFDM-IM) consists of active and passive subcarriers. Only active subcarriers carry modulated signals while passive subcarriers are left unused. In OFDM-IM systems, information bits are also dynamically embedded in the indices of these active subcarriers. As a result, remaining passive subcarriers cause instantaneously changing and unused holes in the spectrum that a reactive jammer cannot escape from attacking. In this paper, we propose an OFDM-IM-based detection scheme to improve the detection performance against reactive jammers. The proposed method exploits the dynamically changing empty OFDM-IM subcarriers to improve detection performance. A detection mechanism that is based on the variance of received signals is considered to identify the jammed subcarriers reliably and with low complexity. We assumed a destructive and elusive reactive jammer model that applies a zero-mean Gaussian jamming signal to the occupied channels. The performance of the variance detector is investigated analytically for OFDM-IM and OFDM-based systems under the given jammer model. The results showed that passive subcarriers of OFDM-IM inherently provide a better detection performance compared to the classical OFDM. Lastly, the analytical results are verified via simulations against both full-band and partial-band reactive jammers. Also, the effect of noise and the jamming power on the detection performance is investigated via extensive simulations.  相似文献   
100.
Quasi-two-dimensional (2D) perovskites are promising candidates for light generation owing to their high radiative rates. However, strong exciton–phonon interactions caused by mechanical softening of the surface act as a bottleneck in improving their suitability for a wide range of lighting and display applications. Moreover, it is not easily available to tune the phonon interactions in bulk films. Here, we adopt bottom-up fabricated blue emissive perovskite nanoplatelets (NPLs) as model systems to elucidate and as well as tune the phonon interactions via engineering of binary NPL solids. By optimizing component domains, the phonon coupling strength can be reduced by a factor of 2 driven by the delocalization of 2D excitons in out-of-plane orientations. It shows the picosecond energy transfer originated from the Förster resonance energy transfer (FRET) efficiently competes with the exciton–phonon interactions in the binary system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号